Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method
نویسنده
چکیده
Numerical solution of extremely large and ill conditioned eigenvalue problems is attracting a growing attention recently as such problems are of major importance in applications. They arise typically as discretization of continuous models described by systems of partial differential equations (PDE’s). For such problems, preconditioned matrix-free eigensolvers are especially effective as the stiffness and the mass matrices do not need to be assembled, but instead can be only accessed through functions of the corresponding vector-matrix products.
منابع مشابه
Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
Since introduction [A. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SISC (2001) doi:10.1137/S1064827500366124] and efficient parallel implementation [A. Knyazev et al., Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc, SISC (2007) doi:10.1137/060661624], LOBPCG has been used is a wide r...
متن کاملA geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems
In two previous papers by Neymeyr: A geometric theory for preconditioned inverse iteration I: Extrema of the Rayleigh quotient, LAA 322: (1-3), 61-85, 2001, and A geometric theory for preconditioned inverse iteration II: Convergence estimates, LAA 322: (1-3), 87-104, 2001, a sharp, but cumbersome, convergence rate estimate was proved for a simple preconditioned eigensolver, which computes the s...
متن کاملUniversity of Colorado at Denver and Health Sciences Center Preconditioned Eigensolver LOBPCG in hypre and PETSc
We present preliminary results of an ongoing project to develop codes of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems for hypre and PETSc software packages. hypre and PETSc provide high quality domain decomposition and multigrid preconditioning for parallel computers. Our LOBPCG implementation for hypre is publicly available in hy...
متن کاملEfficient Solution of Symmetric Eigenvalue Problems Using Multigrid Preconditioners in the Locally Optimal Block Conjugate Gradient Method
We present a short survey of multigrid–based solvers for symmetric eigenvalue problems. We concentrate our attention on “of the shelf” and “black box” methods, which should allow solving eigenvalue problems with minimal, or no, effort on the part of the developer, taking advantage of already existing algorithms and software. We consider a class of such methods, where the multigrid only appears ...
متن کاملHybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing nonorthogonal basis functions for ab initio electronic structure calculations. In this paper, we propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 23 شماره
صفحات -
تاریخ انتشار 2001